
Community

AWS Community

A Pragmatic Introduction to Microservices

AWS Community

Key Takeaway

Understand key differences between monolith and

microservices, why and how to implement integration

pattern with serverless, and benefits of using

microservices

AWS Community

Agenda for Today

1. Development transformation at Amazon

2. Monolith and Microservices

3. Application Integration Patterns

4. Benefits of using microservices

A Journey.

AWS Community

monolithic application
+ teams

2001

Lesson learned: decompose for agility

2002

microservices
+ two-pizza teams

Development transformation at Amazon: 2001–2002

AWS Community

Full ownership & autonomy

You build it, you run it

DevOps – small, nimble teams

Focused innovation

Two-p izza teams are fast & ag i le

2002 - API Mandate

1. All teams will henceforth expose their data and functionality
through service interfaces.

2. Teams must communicate with each other through these
interfaces.

3. There will be no other form of inter-process communication
allowed.

4. It doesn’t matter what technology they use.

5. All service interfaces, without exception, must be designed
from the ground up to be externalizable.

AWS Community

1000s of
teams

Micro-
services CI/CD Serverless

>60 million deployments a year

Impact

Microservices.

AWS Community

Completely
independent

Monolith Microservices

?

Bas i c Concepts and Def in i t ions

AWS Community

Monolith
Does everything

Microservices
Does one thing

When the impact of change is small, release velocity can
increase

AWS Community

Web servers
Presentation layers

Application
servers
Business logic

Database servers
Data layer

Trad i t iona l three-t ie r appl i cat ion arch i tecture

AWS Community

Use case: Monolith

AWS Community

A m o d e r n t h r e e - t i e r a p p l i c a t i o n a r c h i t e c t u r e

Queues/messages

Presentation

Business logic

Data

Microservice MicroserviceMicroservice

APIs APIs

AWS Community

Presentation

Business logic

Data

Queues/messages

Events Events

APIs

A s ing le mic roserv i ce

AWS Community 16

AWS Lambda — Event-driven function

Event Source Function Services / Other

Changes in
data state

Requests to
endpoints

Changes in
resource state

Node.js
Python

Java
C#
Go

Ruby
Bring Your Own

AWS Community

Use case: Serverless API Diagram

Application Integration

AWS Community

Consider how you integrate applications and modular
services

Synchronous – API based Asynchronous – event driven
Inter- /
intraservice

Common for communication
between apps

Common for communication
within apps

Scalability Requires tools to manage
point-to-point connections Is nearly infinitely scalable

Cost Provisioning for peak use leads to
low CPU utilization

Scales to 0 (pay-for-use
cost benefits)

Latency Can be very low
Is higher in theory, but latency
requirements are rarely as low as
expected (e.g., consider P50, P99)

Agility
Is easy to get started

Is hard to use point to point in
large scale

Decoupled systems increase
agility dramatically

AWS Community

Event-driven architectures drive reliability
and scalability

Asynchronous events

Improve responsiveness
and reduce dependencies

Event routers

Abstract producers and
consumers from each

other

Event stores

Buffer messages until
services are available to

process

Push
event Event

store

Pull
event

Business
logic

Client Service A Service B

AWS Community

Amazon
EventBridge

A serverless event bus service for AWS
services, your own applications, and
SaaS providers.

• Removes friction of writing “point-to-
point” integrations

• Works across dozens of AWS and
SaaS applications

• Provides simple programming model

• Fully managed; pay-as-you-go

AWS Community

Use case: Event-Driven Architecture

AWS Community

Learn more pat te rns

Advantages and Why

AWS Community

Completely
independent

• Requires knowledge of a small, well-
understood domain

• Empowers small, independent teams to
move at their own pace, shortening the
cycle times

• Fully-responsible including development,
staging, and production

Small independent Teams

AWS Community

• Reduced complexity

• Smaller deployments & failure isolation, and
allows graceful failure handling

• Fully responsible teams

Quality

AWS Community

• Vertical alignment with the business
owners

• Fast-feedback loops & low cost of failure

• Freedom to choose and replace the
technology stack individually (per
domain)

Innovation

AWS Community

• Properly decoupled services can be scaled
horizontally and independently from each
other

• Leverage the optimal data persistence
solution per service

• Appropriate and optimal technologies for
a specific service

Scalability

Community

Download the PPT
Code Repo + Demo

AWS Community

https://bit.ly/aws-community-asean-content

Thank you

